129 research outputs found

    Comparative study of nanosized iron cores in human liver ferritin and its pharmaceutically important models Maltofer® and Ferrum Lek using Mössbauer spectroscopy

    Full text link
    Studies of human liver ferritin and its pharmaceutically important models Maltofer® and Ferrum Lek were carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K and Mössbauer spectroscopy with a low velocity resolution at 40 and 20 K. The Mössbauer spectra fits using a multi-component model confirm the hypothesis of the complicated heterogeneous structure of nanosized iron cores in the investigated samples. © 2013 Allerton Press, Inc

    Structural and magnetic study of the iron cores in iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol®

    Get PDF
    Iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol® was investigated by high resolution transmission electron microscopy (HRTEM), X-ray diffraction, thermogravimetry, electron magnetic resonance (EMR) spectroscopy, dc magnetization measurements and 57Fe Mössbauer spectroscopy to get novel information about the structural arrangement of the iron core. The Ferrifol® Mössbauer spectra measured in the range from 295 to 90 K demonstrated non-Lorentzian two-peak pattern. These spectra were better fitted using a superposition of 5 quadrupole doublets with the same line width. The obtained Mössbauer parameters were different and an unusual line broadening with temperature decrease was observed. Measurements of the Ferrifol® Mössbauer spectra from 60 to 20 K demonstrated a slow decrease of magnetic relaxation in the iron core. Zero-field-cooled and field-cooled magnetization measurements revealed a blocking temperature at ~33 K and paramagnetic state of the Ferrifol® iron core at higher temperatures. Isothermal magnetization measurements at 5 K show that the saturation magnetic moment is ~0.31 emu/g. X-band EMR spectroscopy measurements revealed the presence of different magnetic species in the sample. Transmission electron microscopy demonstrated that the size of the iron cores in Ferrifol® is in the range 2–6 nm. The lattice periodicity in these iron cores, measured on the HRTEM images, appeared to be vary in the range 2.2–2.7 Å. This can be best understood as sets of close packed O(OH) layers in ferrihydrite cores without long range correlation
    corecore